首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   8篇
  国内免费   4篇
测绘学   30篇
大气科学   66篇
地球物理   44篇
地质学   130篇
海洋学   7篇
天文学   56篇
综合类   6篇
自然地理   5篇
  2022年   8篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   35篇
  2017年   26篇
  2016年   30篇
  2015年   23篇
  2014年   31篇
  2013年   24篇
  2012年   29篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   19篇
  2007年   6篇
  2006年   7篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1974年   2篇
排序方式: 共有344条查询结果,搜索用时 265 毫秒
21.
The line-of-sight direction in the redshifted 21-cm signal coming from the cosmic dawn and the epoch of reionization is quite unique in many ways compared to any other cosmological signal. Different unique effects, such as the evolution history of the signal, non-linear peculiar velocities of the matter etc. will imprint their signature along the line-of-sight axis of the observed signal. One of the major goals of the future SKA-LOW radio interferometer is to observe the cosmic dawn and the epoch of reionization through this 21-cm signal. It is thus important to understand how these various effects affect the signal for its actual detection and proper interpretation. For more than one and half decades, various groups in India have been actively trying to understand and quantify the different line-of-sight effects that are present in this signal through analytical models and simulations. In many ways the importance of this sub-field under 21-cm cosmology have been identified, highlighted and pushed forward by the Indian community. In this article, we briefly describe their contribution and implication of these effects in the context of the future surveys of the cosmic dawn and the epoch of reionization that will be conducted by the SKA-LOW.  相似文献   
22.
Studying the cosmic dawn and the epoch of reionization through the redshifted 21-cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the Universe. Interpreting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21-cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.  相似文献   
23.
We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.  相似文献   
24.
Origin of magnetic fields, its structure and effects on dynamical processes in stars to galaxies are not well understood. Lack of a direct probe has remained a problem for its study. The first phase of Square Kilometre Array (SKA-I), will have almost an order of magnitude higher sensitivity than the best existing radio telescope at GHz frequencies. In this contribution, we discuss specific science cases that are of interest to the Indian community concerned with astrophysical turbulence and magnetic fields. The SKA-I will allow observations of a large number of background sources with detectable polarization and measure their Faraday depths (FDs) through the Milky Way, other galaxies and their circum-galactic mediums. This will probe line-of-sight magnetic fields in these objects well and provide field configurations. Detailed comparison of observational data (e.g., pitch angles in spirals) with models which consider various processes giving rise to field amplification and maintenance (e.g., various types of dynamo models) will then be possible. Such observations will also provide the coherence scale of the fields and its random component through RM structure function. Measuring the random component is important to characterize turbulence in the medium. Observations of FDs with redshift will provide important information on magnetic field evolution as a function of redshift. The background sources could also be used to probe magnetic fields and its coherent scale in galaxy clusters and in bridges formed between interacting galaxies. Other than FDs, sensitive observations of synchrotron emission from galaxies will provide complimentary information on their magnetic field strengths in the sky plane. The core shift measurements of AGNs can provide more precise measurements of magnetic field in the sub parsec region near the black hole and its evolution. The low band of SKA-I will also be useful to study circularly polarized emission from Sun and comparing various models of field configurations with observations.  相似文献   
25.
26.
Inverted metamorphism in the Himalayas is closely associated with the Main Central Thrust (MCT). In the western Himalayas, the Main Central Thrust conventionally separates high grade metamorphic rocks of the Higher Himalayan Crystalline Sequence (HHCS) from unmetamorphosed rocks of the Inner sedimentary Belt. In the eastern Himalayas, the Inner sedimentary Belt is absent, and the HHCS and meta-sedimentary Lesser Himalayan Sequence (LHS) apparently form a continuous Barrovian metamorphic sequence, leading to confusion about the precise location of the MCT. In this study, it is demonstrated that migmatitic gneisses of the sillimanite zone in the higher structural levels of the HHCS are multiply deformed, with two phases of penetrative fabric formation (S1HHCS and S2HHCS) followed by third folding event associated with a spaced, NW-SE trending, north-east dipping foliation (S3HHCS). The underlying LHS schists (kyanite zone and lower) are also multiply deformed, with the bedding S0 being isoclinally folded (F1LHS), and subsequently refolded (F2LHS and F3LHS). The contact zone between the HHCS and LHS is characterized by ductile, top-to-the southwest shearing and stabilization of a pervasive foliation that is consistently oriented NW-SE and dips northeast. This foliation is parallel to the S3HHCS foliation in the HHCS, and the S2LHS in the LHS. Early lineations in the HHCS and LHS also show different dispersions across the contact shear zone, implying that pre-thrusting orientations of the two units were distinct. The contact shear zone is therefore interpreted to be a plane of structural discordance, shows a shear sense consistent with thrust movement and is associated with mineral growth during Barrovian metamorphism. It may well be considered to represent the MCT in this region.  相似文献   
27.
Ice and firn core studies provide one of the most valuable tools for understanding the past climate change. In order to evaluate the temporal isotopic variability recorded in ice and its relevance to environmental changes, stable isotopes of oxygen and hydrogen were studied in a firn core from coastal Dronning Maud Land, East Antarctica. The annual δ 18O profile of the core shows a close relation to the El Niño Southern Oscillation (ENSO) variability. The ENSO indices show significant correlation with the surface air temperatures and δ 18O values of this region during the austral summer season and support an additional influence related to the Southern Annular Mode (SAM). The correlation between the combined ENSO-SAM index and the summer δ 18O record seems to have been caused through an atmospheric mechanism. Snow accumulation in this region illustrates a decreasing trend with opposite relationships with δ 18O data and surface air temperature prior and subsequent to the year 1997. A reorganization of the local water cycle is further indicated by the deuterium excess data showing a shift around 1997, consistent with a change in evaporation conditions. The present study thus illustrates the utility of ice-core studies in the reconstruction of past climate change and suggests possible influence of climatic teleconnections on the snow accumulation rates and isotopic profiles of snow in the coastal regions of east Antarctica.  相似文献   
28.
Boninite-norite (BN) suites emplaced in an intracratonic setting in Archaean Cratons, are reported from many parts of the world. Such high-Mg low-Ti siliceous rocks are emplaced during Neoarchaean-Paleoproterozoic. The Archaean central Indian Bastar Craton also contains such a boninite-norite suite, which occurs in the form of dykes and volcanics. The spatial and temporal correlation of these high-Mg low-Ti siliceous rocks with similar rocks occurring around the northern Bastar and Dharwar Cratons probably represent a Bastar-Dharwar Large Igneous Province during the Neoarchaean-Paleoproterozoic. Platinum group element (PGE) abundances in these rocks provide constraints on their geochemical evolution during the Neoarchaean-Paleoproterozoic. The PGE geochemistry of the boninite-norite suite from the southern part of the central Indian Bastar Craton is presented to understand their behaviour during magma fractionation. In primitive mantle-normalized plots all samples have similar PGE fractionated patterns that are enriched in Pd, Pt and Rh relative to Ru. The Pd/Ru ratios for eight samples range from 2.0 to 7.0 which is higher than primitive mantle (primitive mantle Pd/Ru ≈1.2). The Pd/Pt ratios range between 0.2–2.5 with an average value of 0.7 which is near chondritic (primitive mantle Pd/Pt ≈0.5). PGE variations in these rocks together with those of major and other trace elements are consistent with a model involving olivine fractionation along with chromite as a cotectic phase. The Pt fractionation from Pd and Rh is controlled by both olivine and chromite crystallization at an early stage during high temperature crystal fractionation when the Pt was strongly compatible and Pd and Rh were incompatible. Strong negative correlations of the S content with iron and TiO2 plus lithophile element contents of the rock suggest a decrease of the S solubility in the parental high-Mg magma and separation of an immiscible sulfide liquid with decreasing temperature. Palladium plus other available chalcophile elements (e.g., Re, Au, Ag) have been fractionated in this immiscible sulfide liquid after considerable olivine fractionation of the magma.  相似文献   
29.
An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001–2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.  相似文献   
30.
In this paper, the leading modes of ocean temperature anomalies (OTA) along the equatorial Pacific Ocean are analyzed and their connection with El Niño-Southern Oscillation (ENSO) and interdecadal variation is investigated. The first two leading modes of OTA are connected with the different phases of the canonical ENSO and display asymmetric features of ENSO evolution. The third leading mode depicts a tripole pattern with opposite variation of OTA above the thermocline in the central Pacific to that along the thermocline in the eastern and western Pacific. This mode is found to be associated with so-called ENSO-Modoki. Insignificant correlations of this mode with the first two leading modes suggest that ENSO-Modoki may be a mode that is independent to the canonical ENSO and also has longer time scales compared with the canonical ENSO. The fourth mode reflects a warming (cooling) tendency above (below) the thermocline since 2000. Both the first and second modes have a large contribution to the interdecadal change in thermocline during 1979–2012. Also, the analysis also documents that both ENSO and OTA shifted into higher frequency since 2000 compared with that during 1979–1999. Interestingly, the ENSO-Modoki related OTA mode does not have any trend or significant interdecadal shift during 1979–2012. In addition, it is shown that first four EOF modes seem robust before and after 1999/2000, suggesting that the interdecadal shift of the climate system in the tropical Pacific is mainly a frequency shift and the changes in spatial pattern are relatively small, although the mean states over two periods experienced some significant changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号